Fully Automatic Segmentation of Lumbar Vertebrae from CT Images using Cascaded 3D Fully Convolutional Networks

نویسندگان

  • Rens Janssens
  • Guodong Zeng
  • Guoyan Zheng
چکیده

We present a method to address the challenging problem of segmentation of lumbar vertebrae from CT images acquired with varying fields of view. Our method is based on cascaded 3D Fully Convolutional Networks (FCNs) consisting of a localization FCN and a segmentation FCN. More specifically, in the first step we train a regression 3D FCN (we call it “LocalizationNet”) to find the bounding box of the lumbar region. After that, a 3D U-net like FCN (we call it “SegmentationNet”) is then developed, which after training, can perform a pixel-wise multi-class segmentation to map a cropped lumber region volumetric data to its volume-wise labels. Evaluated on publicly available datasets, our method achieved an average Dice coefficient of 95.77 ± 0.81% and an average symmetric surface distance of 0.37 ± 0.06 mm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatic Liver and Lesion Segmentation in CT Using Cascaded Fully Convolutional Neural Networks and 3D Conditional Random Fields

Automatic segmentation of the liver and its lesion is an important step towards deriving quantitative biomarkers for accurate clinical diagnosis and computer-aided decision support systems. This paper presents a method to automatically segment liver and lesions in CT abdomen images using cascaded fully convolutional neural networks (CFCNs) and dense 3D conditional random fields (CRFs). We train...

متن کامل

3D reconstruction of lumbar vertebrae from computed tomography images

INTRODUCTION: Accurate 3D reconstruction of bony structures is essential for many clinical applications, such as evaluation of bone deformation, surgical planning and clinical follow-up of patients. Computed tomography (CT) is a widely used medical imaging technique in clinical routine, especially for bones which provide high contrast. However accurate bone segmentation still remains challengin...

متن کامل

A multi-scale convolutional neural network for automatic cloud and cloud shadow detection from Gaofen-1 images

The reconstruction of the information contaminated by cloud and cloud shadow is an important step in pre-processing of high-resolution satellite images. The cloud and cloud shadow automatic segmentation could be the first step in the process of reconstructing the information contaminated by cloud and cloud shadow. This stage is a remarkable challenge due to the relatively inefficient performanc...

متن کامل

Towards Automatic Abdominal Multi-Organ Segmentation in Dual Energy CT using Cascaded 3D Fully Convolutional Network

Automatic multi-organ segmentation of the dual energy computed tomography (DECT) data can be beneficial for biomedical research and clinical applications. However, it is a challenging task. Recent advances in deep learning showed the feasibility to use 3-D fully convolutional networks (FCN) for voxel-wise dense predictions in single energy computed tomography (SECT). In this paper, we proposed ...

متن کامل

Automatic Spine Segmentation using Convolutional Neural Network via Redundant Generation of Class Labels for 3D Spine Modeling

There has been a significant increase from 2010 to 2016 in the number of people suffering from spine problems. The automatic image segmentation of the spine obtained from a computed tomography (CT) image is important for diagnosing spine conditions and for performing surgery with computer-assisted surgery systems. The spine has a complex anatomy that consists of 33 vertebrae, 23 intervertebral ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1712.01509  شماره 

صفحات  -

تاریخ انتشار 2017